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UNIT CONVERSION TABLE

Measure SIUnit  US Unit from SIto U+ from US to SI
Length  mm in ' 1 mm = 0.03973 in 1in =254 mm
Area mm? in’ 1 mm?= 0.00155 in? 1in® = 645.16 mm?>
Load kN kip 1 kN =0.2248 kip 1 kip =4.448 kN
Torque  Nm Ib in 1 Nm = 8.8507 Ib in 11bin=0.1130 Nm
Stress MPa ksi 1 MPa = 0.14503 ksi 1ksi = 6.895 MPa
In SI Unit:

1kN=10°N 1Pa=1Nm> 1 MPa=10°Pa=1N/mm? 1GPa=10"Pa
In US Unit:
1klb=10°1b  1psi=11Ib/in*  1ksi=10°psi
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I. EXPERIMENTAL PROGRAM

1.1 Material

The SAE 9254 AL FG, quenched and tempered steel was manufactured by Stelco.
This material was delivered to the University of Toledo in round bar form. The bars were
approximately 1.875 inch in diameter prior to machining. In Table 1, the chemical
composition obtained by Stelco and reported by the University of Waterloo [1] can be
seen. Table 2 lists the axial monotonic and cyclic properties obtained and reported by the

University of Waterloo [1].

1.2 Specimen

In ‘this study, identical round thin-walled tube specimens were used ‘for the
monotonic and fatigue tests. The specimen configuration and dimensions are shown in
Figure 1. The specimens were machined from barstock in a CNC machine to the proper
dimensions and tolerances.. Without ungripping the specimen, the hole was rough-drilled
and then bored. They were then honed in a honing machine. Afier this, the specimens
were ground and then sent for heat treatment. Finally, they were honed again. -

The specimens were put in a lathe and rotated while three different grits of

aluminum oxide lapping film were used for polishing. The grits used were 30y, 151, and

3u. The polishing was then finished using a rotating polishing wheel with a polishing

~compound resulting in a mirror finish. The rotation of the poh“éhmgwwh'ee] coincided wit

the specimen’s longitudinal axis. The polished surfaces were carefully examined under




7 magnification to ensure complete removal of machine marks within the test section. The
internal and external diameters were measured to the nearest 0.0001 inch. The external
diameter was measured using a comparator fitted with a dial indicator, and the internal

diameter was measured using a micrometer and a bore gage.

1.3 Apparatus

An Instron closed-loop servo-controlled hydraulic axial-torsion load frame and
digital servo-controller were used to conduct the tests. The calibration of this system was
verified prior to beginning the test program. The load cell used had a capacify of 8850
Ib.in. in torsion and 22,480 1b axially. Hydraulically operated grips using universal
tapered collets were employed to secure the specimens' ends in series with the load cell.
Total shear strain was controlled for most tests using an Epsilon axial-torsion
extensometer. The calibration of the extensometer was verified using a specimen fitted
with strain gages and the calibration apparatus provided by the manufacturer. The
extensometer had a gage length of 1 inch and had a shear strain angle range of +2.5° (5°
angle of twist on 1.0 in. diameter Specimen). In order to protect the specimens' surface
from the contact points of the extensometer, ASTM Standard E606 [2] recommends the
use of transparent tape or epoxy to 'cushion' the attachment. For this study, it was found
that application of three layers of ti‘ansparent tape effectively cushioned the extensometer

when the extensometer springs had been adjusted properly.

The load train (load cell, grips, specimen, and actuator) was checked for proper

alignment. Misalignment can result from both tilt and offset between the central lines of

the load train components. According to ASTM Standard ‘E606 [2] , the m@g&in}um



q bending strains should not exceed 5 % of the minimum axial strain range imposed during
any test program. To test this, two arrays of four strain gages per array were arranged at
the upper and lower ends of the uniform gage section. For each array, gages were equally
spaced around the circumference of a 0.61-in. diameter specimen with uniform gage
section. The maximum bending strain determined from the specimen fitted with strain
gages was less than 20 microstrain. This value was well within the allowable ASTM

limit.

1.4 Test Methods and Procedures

1.4.1 Monotonic torsion tests

Two specimens were used to obtain the monotonic properties. Due to the
limitations of the extensometer, strain control was used only up to a shear strain of 0.04.
After this point, the extensometer was removed and rotational displacement control was
used until fracture. For the entire strain-controlled portion (0 to 0.04 shear strain), a

. " . Sel e

strain rate of 0.0002 shear strai/mindwas chosen. After this a rotation rate of 0.07
degrees/sec. was chosen to give a similar strain rate. For these tests the axial channel was

run in load control allowing the specimen to change in length and avoiding axial stress.

1.4.2 Constant amplitude torsion fatigue tests

There are no ASTM standards for torsion-fatigue-testing.—ASTM-Standard-E606
_[2] for axial strain-controlled fatigue testing recommends at least 10 specimens be used to.
generate the axial fatigue properties of a material. For this torsion study, 14 specimens at

7 different shear strain amplitudes ranging from 0.0065 to 0.023 were utilized resulting in



lives between one hundred and one million cycles. The Instron software Max was used to
! record the hysteresis loops at intervals of 2",

There were three control modes used for these tests. Strain control was used for
most tests, with the exception of the totally elastic tests. Most of the strain-controlled
tests were run in strain control until the estimated midlife and then changed over to torque
or rotation control. The reason for the change in control mode was for the protection of
the extensometer. Since the material us‘ed was very brittle, fracture occurred suddenly and
induced a shock to the extensometer. For the strain-controlled tests, the applied
frequenﬁes ranged from 0.10 Hz to 0.50 Hz. For the torque and rotation controlled tests,
the frequencies ranged from 0.1 to 3 Hz. For some tests, after switching to torque or
rotation control the frequency was increased in order to shorten the overall test duration.

All tests were conducted at room temperature and using a sinusoidal waveform.




II. EXPERIMENTAL RESULTS AND ANALYSIS

2.1 Monotonic Deformation Behavior
| The properties determined from monotonic tests were the following: modulus of
rigidity or shear modulus (G), shear yield strength (t,), ultimate shear strength (t,), shear
; fracture strength (ty), shear strength coefficient (Ko), and shear strain hardening exponent
(no).

Shear stress (1), strain (y), and plastic strain (y,) for the specimen midsection were

calculated from the measured torque and the specimen dimensions:

T
Tnﬁdseclion = A ~ (la)

;midseclion
— nnidseclion ( lb)

ymidseclion - ysurface
rsunface
T . .
— __ _” midsection

yp_midseclion - }/midseclion G (1C)

Note that the difference between Tpigsection calculated from Equation (1a) and from T=
1 "y

Tr/J for a thin-walled tube with outside and inside diameters of 0.6 and 0.5, respectively,

is less than 1%. Either equation can be used for elastic as well as inelastic behavior.

Equation (1b) is used to extrapolate the surface shear strain controlled in the test to the

midsection shear strain. This linear extrapolation applies to both elastic as well as

inelastic deformations. e
The modulus of rigidity or shear modulus (G) was determined by calculating the .

slope of the elastic region of the monotonic curves. Therefore,
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:‘. The shear yield strength (ty) was determined by using the 0.2% offset method on the
{ monotonic shear stress-strain curve. The ultimate shear strength (t,) and shear fracture
strength were calculated using:

T
o B 3
u j,l" ()

midsection

4 and

d @

T; =
Ar

midsection

; respectively, where T, is the ultimate or maximum torque and Ty is the torque at fracture.
| Shear fracture strain (yg) was not attained because the extensometer was removed before
+ fracture.

Analogous to axial stress-strain representation, the shear stress (T) - shear strain

(y) relation is also often represented by the Ramberg-Osgood equation:

1 .
T T "o
Y=Y, tv,=—=+%|— ©)
YC P G (K-O ]
The shear strength coefficient, Ko, and strain hardening exponent, ny, are the intercept and

slope of the best line fit to shear stress (t) versus plastic shear strain (y,) data in log-log

scale:

r=K, (v, ) | (6)

. The shear stress and plastic shear strain used were for the specimen midsection: -When

¢ performing the least squares fit, the plastic shear strain (y,) was the independent variable




o

¢ and the stress (t) was the dependent variable in accordance with ASTM Standard E739
#[3]. Figure 2 shows the torque versus rotation curves from monotonic tests. The

i monotonic shear stress-strain curves are shown in Figure 3. As can be seen from this

figure, the two curves are close to each other. The plot used to determine Ky and ng can be

seen in Figure 4. The valid data range used was between the end of the yield point strain

{ and the shear strain at which the extensometer was removed. A summary of the results

¢ from each monotonic torsion test is shown in Table A.l and the average values are also

listed in Table 5.

2.2 Cyclic Deformation Behavior

2.2.1 Transient cyclic response

Transient cyclic response describes the process of cyclic-induced change in
deformation resistance of a material. Data obtained from constant amplitude fatigue tests
were used to determine this response. Plots of stress amplitude variation versus applied
number of cycles in strain-controlled tests can indicate the dégree of transient cyclic
softening/hardening. Also, these plots show when cyclic stabilization occurs. A
compésite plot of the transient normalized cyclic 1'esponlse for SAE 9254 AL FG

quenched and tempered steel is shown in the rectangular plot in Figure A1, while a semi-

i log plot is shown in Figure A2. These figures indicate cyclic stability is achieved early

during the cyclic deformation process. Even though multiple tests were conducted at

each strain amplitude level, results from one test at each level are shown in these figures.



2.2.2 Steady-state cyclic deformation

Another cyclic behavior of interest was the steady state or stable response. Data

obtained from constant amplitude fatigue tests were also used to determine this response.

::%The properties determined from the steady-state hysteresis loops were the following:
icyclic shear strength coefficient (Ko'), and cyclic shear strain hardening exponent (ng').
Half-life (midlife) hysteresis loops and data were used to obtain the stable cyclic shear
; properties. Similar to monotonic behavior, the cyclic shear stress-strain behavior can be
~ t characterized by the Ramberg-Osgood type equation:

r
gy

T
;'s }/a :7/e+yp :_é ﬂ, (7)

It should be noted that in Equation (7) and the other equations that follow, G is the shear
imodulus that was measured from the monotonic tests. The cyclic shear étrength
coéfficient, Ky', and cyclic shear strain hardening exponent, ng', are the intercept and slope

of the best line fit to shear stress amplitude (At/2) versus plastic shear strain amplitude

At Sdv "o |
‘;:K(—] | ®)

52

s done for axial testing in accordance with ASTM Standard E739. Shear stress




midlife. Plastic shear strain amplitudes for midsection were calculated by the following

quation:
j T
% Ay.” — ) _ ( a )midsecliou 9
; 2 - (y” midsection G ( )
midsection midlife

2 This plot is shown in Figure 5. To generate the K¢’ and ny’ values, the range of data used

1 in the figure was chosen for [Ay,/2] caiculaea = 0.00027. The curve showing the Ramberg-
§Osgood equation and the data can be seen in Figure 6.

The cyclic stress-strain curve reflects the resistance of a material to cyclic
| deformation and can be vastly different from the monotonic stress - strain curve. In
{Figure 7, superimposed plots of monotonic and cyclic curves are shown. As can be seen
in Figure 7, SAE 9254 AL FG quenched and tempered steel cyclically softens. Figure A3

ishows a composite plot of the steady-state (midlife) hysteresis loops. Even .though

+multiple tests were conducted at each level, the loop from only one test is shown from
s each shear strain level. Tables 3 and 4 provide the summary of the fatigue test results and

{ fatigue test calculations, respectively.

123 Constant Amplitude Torsional Fatigue Behavior

Constant amplitude strain-controlled torsion fatigue tests were performed to

determine the shear strain-life curve. Analogous to the Coffin-Manson equation for axial

fatigue behavior, the following equation relates the-shear strain-amplitude-to-the-fatigue————

o R e e el SRS

11




S

L%where 7' 1s the shear fatigue strength coefficient, by is the shear fatigue strength exponent,
v is the shear fatigue ductility coefficient, cg is the shear fatigue ductility exponent, G is

B

;the shear modulus, and 2Ny is the number of reversals to failure (which was defined as a

10% torsional load drop).

Sk

The shear fatigue strength coefficient, 7, and shear fatigue strength exponent, by,

?ale the intercept and slope of the best line fit to shear stress amplitude (At/2) versus

i
“a

(11)

3+ When performing the least squares fit, the shear stress amplitude (At/2) was the
;independent variable and the reversals to failure (2Ny) was the dependent variable as is
done for a‘xial testing in accordance with ASTM Standard E739 [3]. This plot is shown
:in Figure 8. To generate the Tf and by values, the range of data used in this figure was

‘ chosen for N¢ < 10° cycles. The shear fatigue ductility coefficient, ¢, and shear fatigue

o

i ductility exponent, cg, are the intercept and slope of the best line fit to calculated shear

jf plastic strain amplitude (Ayp/2) versus reversals to failure (2Np) data in log-log scale:
| ( zpj :y'f(ZNf)'b ‘ (12)
*é calculated

E}fWhCD performing the least squares fit, the calculated shear plastic strain amplitude (Ay,/2)

was the independent variable and the reversals to failure (2Ny) was the dependent variable

1 as is done in axial testing in accordance with ASTM Standard E739 [2]. The calculated

i shear plastic strain amplitude was determined from Equation 12. This plot is shown in

Figure 9. Figure 10 shows the same plot with measured plastic shear strain amplitude




alues. As can be seen, similar results are obtained. To be consistent with the procedure

i

"L:’Eused for axial strain-controlled fatigue property determinations by AISI, the plot with the

5‘0albulated plastic shear strain amplitudes was used t¢: obtain ;" and ¢o. The data range

R,

iikfiused in these plots was for Ay,/2 > 0.00067.

&

i

Shaids

Bnaen

The total shear strain amplitude versus reversals to failure plot is shown in Figure
’ll This plot displays the shear strain-life curve (Eqn. 10), the elastic shear strain portion
Eqn. 11), the plastic shear strain portion (Eqn. 12), and superimposed torsion fatigue
édata. A summary of the cyclic properties for SAE 9254 AL FG quenched and tempered

steel is provided in Table 5.
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ITII. PREDICTIONS AND FAILURE MECHANISMS

31 Predictions from axial data

Common failure criteria were used to predict the torsional behavior of the material

rom axial data. Experimentally obtained monotonic and cyclic data for both axial and
itorsional tests of the material are summarized in Table 6. The torsional monotonic curve

as compared to the von Mises and the Tresca predictions. This was done by using the

EgRamberg-Osgood equation:
i T (7 %
7’=?’a+7p=5+ A - (13)
0

‘where Ko and ng are computed using predictions based on von Mises criterion [3]:
K, =K(1/3)"™"  and no=n (14)

fesulting in Ko=1645 and ny=0.0418, and predictions based on Tresca criterion:

K, = —’5—(2/3)“ and np=n | (15)

R

resulting in Ko = 1‘433 MPa and np = 0.0418. Note that from the torsion test, Kq= 1416

;ﬁf%md no = 0.0473.  This comparison can be seen in Figure 12. It can be seen from this

1igure that the Tresca estimation fits the actual data better than the von Mises prediction.

The next prediction is for the cyclic deformation curve. This was done using the

me equations as with the monotonic curves (Equations 14 and 15), except with ny” and

0" being calculated using n’ and K’ from the axial cyclic properties. The von Mises

;igcuterion results in Ko’ = 1827 MPa, and ny’ = 0.088, while the Tresca criterion results in

&
L

<o’ = 1603 MPa, and ny’ = 0.088. Note that from the torsion test data Ko’ = 1277 MPa,

14




4and ng’ = 0.0783. These constants were then used in the following equation to represent

f the shear stress-shear strain relationship:

4, (16)

his comparison can be seen in Figure 13. This figure shows that both estimates are high
ompared to the test data, with Tresca criterion providing better estimations. It should be
oted, however, that as mentioned earlier, both Tresca and von Mises criteria use axial
| roperties to predict torsional behavior. For the material studies, due to small cyclic
lgstic deformations in axial tests and lack of sufficient data, reported values of K’ and n’
ay not be accurate. Therefore, less accurate predictions for the cyclic curve, compared
the monotonic curve, may be due to insufficient data from the axial tests, rather than
w predictive capability of the criterion.

The final predictions made were for the fatigue data. The torsional strain-life

equation
j A A ¢ AY T' 0 ' o :
| CACE AT A an

 was used, where T’ and Y’ were calculated for the von Mises criteria using:

7. '=g", /43, y . '=+3¢,", bo=b, and co=c (18)
1S9 r !

7,'=0", /2, y,'=15¢,", by=b,and  co=c_. ) (19).
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sere used resulting in 7 = 2054 MPa, vy = 1.69, bo=-0.109, and ¢y = -0.954. For the

“haximum principal strain criterion:

z’-f — O"f /(1 + V) s yf '— 28f ! , bO = b, and cop=cC (20)

s‘ulting in t'= 2739 MPa, v = 2.26, by = -0.109, and ¢p = -0.954. Note that from
sion tests T = 1255 MPa, yf'= 0.4001, by = -0.0544, and ¢y = -0.6027. This
mparison can be seen in Figure 14. It can be seen that among the three criteria the von

5
Mises criterion provides the best estimation.

o, '=4.25(HB) + 225 (21)

£,l= %[0.32(1&13)2 — 487(HB) +191000] | 22)
b=-009, and co=-0.56 | (23)

A'Eompzu*ison of the predicted axial fatigue curve with the experimental axial curve is

shown in Fi gure 15. Combining Equations (21) through (23) with Equations a7 tlmrough

(20) gives three new estimations of torsional fati‘gue1)1'0peﬁi'e'S“bas'e:d*on“hardneés%The***”

substitution for von Mises criterion results in:-

i A 4' 2 ) R T _ [N - FANE vy
(L BBEB 2By Yoo +—[§~[0.32(HB)2 —487(HB) +191000J2N , J**° 4)
2 V36 d E ! , oL




or Tresca criterion:

by 425U £ 2251

= P +1—1':5—[0.32(HB)2 — 487(HB)+191000)2N , 25)

nd for maximum principal strain criterion:

y [425(HB)+2251(,  \ow 2 - 10001l Y5 2%
e (2n,) +=[032(HB)’ ~487(HB) +19 00](2N, ) (26)

his- comparison can be seen in Figure 16. Although it appears that the maximum
rincipal strain criterion fits the data the best, it is invalid to conclude that it is the best
rédiction. Referring back to Figure 15, it can be seen that the predictions from hardness

re low compared to the data. Therefore the closeness of the maximum principal strain

rediction is merely a cancellation of two errors. One error is that of the low estimate
om the hardness prediction method and the other being that of high estimate from the

aximum principal strain criterion.

33 Failure Modes and Fracture Surfaces

Observed cracks on the specimens appeared to be in one of the maximum shear

 planes, either parallel to the axis of the specimen or circumferential in orientation. Due to

‘high hardness and brittleness of the material tested, it was difficult to stop the tests
fbt‘;ff‘ore fracture. Figure 17 shows a specimen for which it was possible to stop the

,v”‘vi‘(pfcﬁrhnent before fracture occurred. The long longitudinal crack can be seen here. In

§Fi‘g’m'e 18, the specimen shown had a longitudinal fatigue crack until brittle fracture

‘occurred. The specimen in Figure 19 shows cracking on both longitudinal and transverse

o

Planes, with final fracture occurring in a spiral shape on a 45° plane (maximum principal

stress plane). Figure 20 shows a fractured specimen with a circumferential crack. One




" Oéélusion that can be drawn from these observations is that the orientation of fatigue
1aCkS under purely torsional loading was on the maximum shear planes. It should also
e}joted that when this material fractures, although the failure crack may appear to be on
hk(‘:,}"maximum principal stress plane at 45°, the fatigue damage mechanism in fact is shear.
his agrees with the fact that, contrary to common belief, stress or strain criteria may not
e‘rappropriate for brittle/high strength steels and can result in conservative fatigue life

redictions.

18
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T;}ble 1: Chemical composition of SAE 9254 AL FG Quenched and Tempered steel [1]

Carbon, C 0.57%
Manganese, Mn 0.71%
Phosphorous, P 0.011%

Sulfur, S 0.009%

Silicon, Si 1.57%

Copper, Cu 0.011%

Nickel, Ni 0.01%

Chromium, Cr 0.72%
Molybdenum, Mo 0.005%
Vanadium, Va 0.007%
ASA 0.028%

N 0.007%
Columbium, Cb 0.002%




Table 2: Axial Material Properties [1]

Monotonic Properties for S8AE 9254 AL FG, Quenched and Tempered
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Figure 1: Specimen configuration and dimensions (all dimensions in milimeters)
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Figure 3: Monotonic shear stress-strain curves
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Figure 19: Fractured specimen with

Figure 18: Fractured specimen with--—-——= = : ;
longitudinal crack (specimen T 7, longltudmall\lm_agl; (Ss(}g(a)c1111e11 T,
Ne=1051) . B i
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Figure 20: Fractured specimen with circumferential crack
(specimen T 3, Ny = 7,088)
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