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SUMMARY

, The required chemical analysis, microstructure data, mechanical properties, cyclic
L stress-strain data and strain-controlled fatigue data for SAE 9254 (Mod.), Quenched and
Tempered (Iteration No. 34) have been obtained. The material was provided by the
L American Iron and Steel Institute (AISI) in the form of 0.65" bars. These bars were

| machined into smooth axial fatigue specimens. The specimens were heat treated to
1 temperature 1650 °F in a nitrogen medium for 45 minutes and quenched in hot oil at 150
°F and tempered at 770 °F for 45 minutes to give a hardness of about Re 51-55 then water
- quenched. Two monotonic tensile tests were performed to measure the yield strength, the
% tensile strength and the reduction of area. Twenty seven specimens were fatigue tested in

Jaboratory air at room temperature to establish a strain-life curve.
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INTRODUCTION

This report presents the results of tensile and fatigue tests performed on a group of
27 SAE 9254 (Mod.), Quenched and Tempered steel samples. The material was provided
by the American Iron and Steel Institute.

The objectives of this investigation were to obtain the chemical analysis, and

microstructural data, mechanical properties, cyclic stress-strain data and strain-life tests

requested by the AISI bar group.

EXPERIMENTAL PROCEDURE
Specimen Preparation

The material for the study was received in the form of bars. Smooth cylindrical
fatigue specimens, shown in Figure 1, were machined from the metal bars then sent to be
heat treated at Cambridge Heat Treatment Inc. The gauge sections of the fatigue
specimens were mechanically polished in the loading direction using 240, 400, 500, and
600 emery paper. After polishing, a thin band of M-coat D acrylic coating was applied
along the central gauge section. The purpose of the M-coat D application was to prevent
scratching of the smooth surface by the knife-edges of the strain extensometer, thus
reducing the incidence of knife-edge failures. In total, 27 fatigue data points were

generated.

Test Equipment and Procedure

Two monotonic tension tests were performed to determine the yield strength, the
tensile strength, the percent of elongation and the percent reduction of area. Hardness
tests were performed on the surface of three fatigue specimens using a Rockwell C scale.
The hardness measurements were repeated three times for each specimen and the average

value was recorded.

All fatigue tests were carried out in a laboratory environment at approximately 25

oC using an MTS servo-controlled closed loop electrohydraulic testing machine. A
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process control computer, controlled by FLEX software [1] was used to output constant

strain and stress amplitudes in the form of a sinusoidal wave.

Axial, constant amplitude, fully reversed (R=-1) strain-controlled fatigue tests
were performed on smooth specimens. The stress-strain limits for a given cycle of each
specimen were recorded at logarithmic intervals throughout the test via a peak reading
oscilloscope. Failure of a specimen was defined as a 50 percent drop in tensile peak load
from the peak load observed at one half the expected specimen life. For fatigue lives
greater than 100,000 reversals, the specimens were tested in stress-control once the stress-
strain loops had stabilized. For the stress-controlled tests, failure was defined as the
separation of the smooth specimen into two pieces. For strain-controlled tests the loading
frequency varied from 0.03 Hz to 5 Hz while in stress-controlled tests the frequency used
was up to 80 Hz.

The first reversal of each fatigue test was recorded on a x-y plotter, allowing the

elastic modulus (E) and the monotonic yield strength to be determined.

RESULTS
A) Microstructure Data

Figure 2 presents the martensitic microstructure of SAE 9254 (Mod.), Quenched
and Tempered steel. A Type D inclusion severity level of 15 was obtained based on
ASTM E45 (Method A). Inclusions of types A, B, and C were not observed. Figure 3
shows the inclusions observed in the SAE 9254 (Mod.), Quenched and Tempered steel.
The inclusion area was measured using a JAVA image analysis system. The chemical
composition of SAE 9254 (Mod.), Quenched and Tempered steel was provided by the
supplier (Meritor Inc.), and is shown in Table 1.



B) Strain-Life Data

The fatigue test data for SAE 9254 (Mod.), Quenched and Tempered steel
obtained in this investigation are given in Table 2. The stress amplitude corresponding to
each strain-amplitude was calculated from the peak load amplitude at the specimen half-
life.

A fatigue strain-life curve for the SAE 9254 (Mod.), Quenched and Tempered

steel is shown in Figure 4, and is described by the following equation:

As _ Oy : ‘
— : —E—(ZNf)b +gf(2Nf)
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where > = True total strain amplitude

ON; = Number of reversals to failure

off = Fatigue strength coefficient

b = Fatigue strength exponent

€'; = Fatigue ductility coefficient

c = Fatigue ductility exponent

~ Where ¢'¢= 2914 MPa, b =-0.0973, g',= 4.17 and ¢ = -0.926. These values of the strain-

life parameters were determined from fatigue testing over the range: 0.0034 < %{ <0.01.

C) Cyclic Stress-Strain Curves

Stabilized and half-life stress data obtained from strain-life fatigue tests were used
to obtain the companion cyclic stress-strain curve shown in Figure 5. The true cyclic

stress-strain curve is described by the following equation:
1
o} o\
E=—= -

where € = True total strain amplitude
c = Cyclically stable true stress amplitude



K = Cyclic strength coefficient

1

n = Cyclic strain hardening exponent
Where K' = 2168 MPa and n' = 0.0757.
D) Mechanical Properties

The engineering monotonic stress-strain curve is given in Figure 6. The monotonic and
cyclic properties are included in Appendix 1. The Hardness of the SAE 9254 (Mod.),
Quenched and Tempered steel taken as the average of three randomly chosen fatigue
specimens and is given in Appendix 1. The individual hardness measurements are also
given in Table 2. The true monotonic and true cyclic stress-strain curves plotted together

are given in Figure 7.
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Figurel. Smooth cylindrical fatigue specimen




(b) Transverse Direction

Figure 2. Photomicrographs of SAE 9254 (Mod.), Quenched and Tempered (X200)
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Figure 5. Monotonic stress-strain curves for SAE 9254 (Mod.), Quenched and Tempered

steel.
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Figure 7. Monotonic and Cyclic stress-strain curves for SAE 9254 (Mod.), Quenched and

Tempered steel.
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Figure 6. Cyclic stress-strain curve for SAE 9254 (Mod.), Quenched and Tempered steel.
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Table 1 Chemical composition of SAE 9254 (Mod.), Quenched and Tempered steel.

Carbon, C
Manganese, Mn
Phosphorous, P

Sulfur, S

Silicon, Si

Copper, Cu
Nickel, Ni
Chromium, Cr
Molybdenum, Mo
V .
AL
N

0.52%
0.45%
0.011%
0.011%
1.49%
0.01%
0.01%
0.72%
0.09%
0.19%
0.024%
0.01%
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Average Monotonic Properties for SAE 9254 (Mod.), Quenched and

Cyclic Properties for SAE 9254 AL FG, Quenched and Tempered steel.

Appendix 1

Tempered steel.

Average Elastic Modulus, E

Yield Strength =

Ultimate tensile Strength =

% Elongation =

% Reduction of Area =

True fracture strain, Ln (4;/4;) =
; P,

True fracture stress,o , = —— =
4;

205.7 GPa
1870 MPa
2050 MPa
16.2 %
351 %
436 %

2495 MPa

: . P, 4R D,
Bridgman correction, o, =—— 1+ Lnl 1+ ZIE =2118MPa

4
Monotonic strength coefficient, K
Monotonic strain hardening exponent, n
Hardness, Rockwell C (HRC)
Hardness, Brinell =

Df

Cyclic strength coefficient, K' =
Cyclic strain hardening exponent, n' =
Fatigue Strength Coefficient, o', =
Fatigue Strength Exponent, b =
Fatigue Ductility Coefficient, &' =
Fatigue Ductility Exponent, ¢ =

2413 MPa
0.0418

54

536

- Cyclic Yield Strength, (0.2% offset)= K" (0. 002)" =1354 MPa

2168 MPa
0.076

2914 MPa
-0.0973
4.17

-0.926

Pf’
A and Ag

Load at fracture.

Specimen cross-section area before and after fracture.
Specimen neck radius.

Specimen diameter at fracture.
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Figure 3. Inclusions photomicrograph of SAE 9254 (Mod.), Quenched and Tempered
steel (X500)
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