LMS Engineering Services

SAE FD&E Weld Challenge 3A

Exhaust Hanger Example for SAE FD&E Weld Challenge

Kai Erben, Michael C. Kienert

October 2004

Content

- Test Setup
- FE Setup
- FLA Approach
- FLA Results
- Summary

Input:

- Test type: Uni-axial CA component test
- 4 Load amplitudes: 1023, 845, 689, 578 N
- Mean force = zero
- Material: 409 stainless (tube), 1008/10 steel (rod)
- Failure = detected crack at least 6 mm long

<u>Comment:</u> Imprecise definition of failure, contains macroscopic crack growth. Available SN data will only approximate this criterion.

CAD geometry of specimen:

FE Model:

- FE Code: MSC.Nastran
- Component modeled by 4080 QUAD4 elements
- Element size: b = h = 2*t = 3.8 mm
- Rod modeled with CBAR beam elements
- Rigidly fixed at both ends of component:

Used Approach: Hybrid structural / local stress approach

Used Approach: Hybrid structural / local stress approach

- Motivation: (Nodal) force based approach numerical difficulties at weld ends
- Hybrid approach validated for certain types of welds and joints
- Requires modeling guidelines for structural FE mesh (see next slide)
- Effectively uses a conservative shell stress-life curve applied to normal component of CENTER stress of weld elements (see next slide)

Used Approach: Hybrid structural / local stress approach

- Seam weld modeled by rigid RBE2 connections (all DOFs coupled)
- Element size of QUAD4s: b = h = 2*t = 3.8 mm
- Normal stress component (CENTER) used for fatigue life prediction

Major challenge: "exotic" joint type rod / sheet

No proper definition of sectional forces/moments:

Effective notch factor at weld end unknown

- Decisions made:
 - Rod to be modeled by CBARs
 - Only shell stresses of tube to be assessed, no stress indicator for rod itself
 - Due to lack of specific rod/sheet SN data: SN data derived as interpolation of existing T-joint and lap joint data
- Weld ends:
 - Assessed separately by lowered SN data
 - Scaling factor < 1 derived from specimen tests

SN data:

- Data derived from mild steel weld specimens
- Failure criterion: crack of ≈ 5mm
- Influence of deviating target material not considered

Other FLA parameters:

- Stress based approach
- No mean stress influence

Weld Fatigue Life Analysis Results

A: Location of crack initiation: Crack initiation at upper weld end on side of load introduction

Weld Fatigue Life Analysis Results

B: Predicted Lifetime at different load levels:

Summary

- Major challenge: Non-standard type of joint (rod sheet)
- FE Simplifications:
 - Boundary conditions
 - Geometry of tube
 - Rod modeled by CBARs
- FLA Approach: LMS hybrid structural / local stress approach, effectively leads to shell stress based life prediction
 - Fatigue solver: LMS Virtual.Lab Durability (FALANCS)
- Modeling guideline for element size at seam weld: b = h = 2 * t
- CENTER stress normal to welding direction used for fatigue life prediction
- Seam weld ends assessed by lowered SN curve

