SAE Weld Challenge Fatigue Life Prediction

Chris Sanger Peter Kurath University of Illinois

April 2003

Weld Loading Analysis

E-N

Ansys employed to solve statically indeterminate loading

- Model generated using truss elements
- Nodal loads used for weld loading

Resulting Loads at Junction

	4x4 Tube	2x6 Tube
Fx (kips)	-4	5.8
Fy (kips)	0	3.1
Fz (kips)	0	-2.2
Mx (in-kips)	0	-5.3
My (in-kips)	-50	23.8
Mz (in-kips)	-48	31.3

Stress Analysis

Stresses in the structural components were determined using simple mechanics.

- Multiaxial forces on the welds were resolved into their normal and shear stress components with respect to the minimum throat area.
- Methods for weld stress analysis are based on the International Institute of Welding's (IIW) methodology.

Fatus, F. Joints with Fillet Welds. Elsevier Science Publishers, 1986, pg. .24

Stress Analysis (Cont'd)

 Stresses were calculated at two points. (A and B)
Stresses were then resolved into their principle directions.

(for use in BS7608)

P+ B

Resulting Principle Stresses

	4x4 Tube		2x6 Tube		Weld		
	Pt A	Pt B	Pt A	Pt B	Pt A	Pt B	
σ ₁ (ksi)	11.3	11.3	14.9	12.3	18.6	13.0	
σ <mark>2 (ksi)</mark>	-2.2	-2.2	0	0	-7.2	-5.0	
τ _{max} (ksi)	6.7	6.7	7.5	6.1	13.0	9.0	
σ _m (ksi)	4.6	4.6	7.5	6.1	5.8	4.0	
$\sigma_v^{\text{Base Metal}} \sim 70 \text{ ksi}$ $\sigma_u^{\text{Base Metal}} \sim 90 \text{ ksi}$							

Max @ Point A (Also failure location)

Fatigue Analysis

BS 7608

- Allowance for residual stress and inherent stress concentrations from the weld are built into the BS 7608 S-N curves.
- Since geometry deviates from standard mockups, Class W was used due to the load bearing weld. Cover all category, resulting in conservative design.
- BS 7608 life governed by highest principle stress.
- Reliability of 50% (d=0) selected to compare with experimental results.

Conclusions

Results are still the same relative order of magnitude.

Operator patience coupled with desire for results leads us to believe estimates are reasonable!