Using the fde.uwaterloo.ca fatigue database files

In Chapter 5 Part 0 introduced axial fatigue specimen testing, and a file format for saving the data in a web browser accessible form.

In this sub-section you will learn how to download the files, plot them using the on-line tools, plot them locally using gnuplot, and create a web structure for saving your own data sets.

Step 1 Click on this link: http://fde.uwaterloo.ca/Fde/Materials/dindex.html or copy link to your web browser

You should get back this page:

Lets get a wrought Aluminum example. In your web browser Click here

F.D.+E. Experimental HTML Fatigue Database

Fatigue Design and Evaluation Committee Web Page: http://fde.uwaterloo.ca/Fde/Materials/dindex.html

Index:

- Cast Iron
- <u>Steels</u>
- Stainless Steel
- <u>Tool Steel</u>
- Pipeline Steel
- Wrought Aluminium
- <u>Cast Aluminum</u>
- Cast Magnesium
- <u>Titanium</u>
- Powdered Metals (example file with hysteresis loops)
- <u>Short Fiber Composite Materials</u>
- Other Materials

This page should appear:

= m

When available a merged file is the best source

Click on the merged file (In your browser)

AA 7xxx Series Aluminum Fatigue Data file index :

Web Page: http://fde.uwaterloo.ca/Fde/Material/Alum/AA7xxx/aa7xxx.html Updates: Aug.20 1999. Mar1-2009, Oct2010, Jan2012

The files in this directory are offered by the F.D.& E. committee members as a set of example files for the construction of web based material fatigue property databases. They are meant for information and research use only, not for design.

- AA 7005-T5 (Chung/Abel) Not enough long life data for good Fitted data file.
- AA 7049-T6 (Ramusat/Vidal 1979) Not enough long life data for good Fitted data file.
- AA 7050-T7351 (Ramusat/Vidal 1979) Not enough long life data for good Fitted data file.
- AA 7075-T6 (Endo/Morrow 1969) Not enough long life data for good Fitted data file.
- AA 7075-T651 (Kurath 1984) | Fitted | Calculator
- AA 7075-T651 (Ramusat/Vidal 1979) Not enough long life data for good Fitted data file.
- Merged AA 7075-T6xx composed of above 3 files
 - Merged AA 7075-T6xx | Fitted | Calculator | Stress-Strain Simulator
 - Compare plot of Fitted vs Raw Strain-2Nf
 - Compare plot of Fitted vs Raw Neuber-2Nf

Your web browser should return this page

Pick one	e: # OFDE	_plot #	●FDE_fit	# Send for Pl	ot #			
#web si	te. http:	//1000000	nu org/co	~	-This button will return			
#	ce. neep.	////////	silu i or g/ co		nlots of the data			
# Merge	d Data Fi	le!!	AA7075 T6		plots of the data			
# -	a baca i i		////010_1					
#See de	scription	s belov	N.					
#FileTv	pe= strai	n life	•					
#DataTv	pe= raw							
#TIMEco	l = 0				The raw test result			
#Name=	Merged							
#NAME=	AA7075T6x	x						data is in this
#Name=	Aluminum							/ text hoy
#Stress	units= m	pa						ICAI DOX
#Strain	units= s	train						
#Sy=	480	average	e of (492	,468)				
#Su=	566	average	e of (553	,578)				
#E=	69980.	average	e of (7000	00,70953,6901	L0)			
#%RA=	35.3	avg. o	of (33,37	.6)	-			
#BHN= 1	.50 (from	Rasmus	sat/Vidal					
#								
# Ref.1	: M.Sc.	Thesis	by P. Ku	rath Univ. of	f Illinois.			When vou click on
#								"C and familar"
#TotStr	ain 2Nf	Stress	s Mean	Plastic Stra	ain Initial			"Send for plot"
#_Amp		Amp	Stress	Amp	Elastic Mod.			the contents of the
0.010	508	543.	Θ	0.0022	70000.			
0.010	568	541	Θ	0.0022	70000.			text box are sent to
0.010	590	540	Θ	0.0023	70000.			
0.0075	1964	515	Θ	0.0001	70000.			a U. Waterioo server
0.0075	2874	503	Θ	0.00026	70000.			that decodes it and
0.0075	2900	507	Θ	0.0003	70000.			
0.0050	36600	356	Θ	0.	70000.			creates the plots.
0.0050	37600	350	Θ	0.	70000.			I
0.0050	37600	337	Θ	0.	70000.			
0.0040	106100	279	Θ	0.	70000.			In vour browser
0.0040	106900	281	0	0.	70000.			
0.0040	124800	288	0	0.	70000.			try it now.
0.0034	833000	239	0	0.	70000.			5
0.0034	905000	242	0	0.	70000.			
0.0029	2499000	197	0	0.	70000.			
0.0029	3002100	201	0	0.	70000.			
##\$11-	83 0	Q kei -	- 578 mpa					

The web browser should return a figure as below:

The cyclic stress-strain curve can be fitted with the equation of stress ampl. vs plastic strain ampl.:

$$\Delta \sigma/2 = K' (\Delta \varepsilon_p/2)^n$$

and then strain ampl. is related to stress ampl. with

$$\Delta \varepsilon/2 = \Delta \sigma/2E + (\Delta \sigma/2K')^{1/n'}$$

A number of investigators do this, but such a 3rd fit leads to an over-constrained set of equations.

In order to avoid this some investigators use the formula

$$n' = b/c$$

K' = $\sigma_f' / (\epsilon_f'^{n'})$

which does not always fit the data well.

$$\frac{\Delta \sigma/2}{E} = \frac{\sigma_f}{E}'(2N_f)^b \qquad \Delta \varepsilon_p/2 = \varepsilon_f'(2N_f)^c$$

In the traditional fit he curved line is the vertical addition of the two straight fit lines

It turns out that the traditional fit process is not really necessary. It was invented in the days of hand and slide rule calculations.

An alternate more flexible and accurate method, which we will be using in this course, is simply to represent the curves with:

A digital set of **Strain**, **Stress**, **Life** values

Everything else can be computed from these three variables, if one has a further item:

A good value for the **Elastic Modulus** (Emod).

In the past measurements of the material's Emod have been surprisingly poor. Often researchers have reported only a single measurement of the Emod, or just assumed a value from other reports.

In my experience it is best to measure the elastic modulus at the beginning of each fatigue test and then, when all tests are completed, take the average of the measurements as representative for the material.

Creating a "fitted" file: A digital set of **Strain, Stress, Life** values Method 1

- Step 1 : Arrange your fatigue test data into standard SAE format file Give the file name an .html suffix e.g.: aa7075xxx.html
 - Example: http://fde.uwaterloo.ca/FatigueClass/FCourseNotes/exampleSAEfile.html.txt

Use the example file as a template. Change the comment, identifier tag values, and raw data to your material results.

The resulting html file should look something like this:

K ×			exa	ampleSTDfile.html +	(~/Seminars/FC	ourseDbase) - GVIM					
File Edit Tools Syntax Buffers Window Help								Avoid using Tab character			
ð B	-	5 ८	XD		i i i i i i i i i i i i i i i i i i i	3 Ⅲ ≻ ≇		to create this file.			
<pre>#<html><title>Material + Cycles File</title><body> #<form action="http://mme.uwaterloo.ca/cgi-bin/catgnume" method="POST"> #<form color="green" size="5"><dl compact=""> Pick one: #<input name="#saeinput" type="radio" value="FDE_plot"/>FDE_plot #<input checked="" name="#saeinput" type="radio" value="FDE_fit"/>FDE_fit #<input type="submit" value="Send for Plot"/> #<input type="submit" value="Send for Plot"/> # # Copyright (C) 2011 Fatigue Design + Evaluation Comm. and P.Kurath # AA7075_T651 Aluminum Wrought # Ref.: M.Sc. Thesis by P. Kurath Univ. of Illinois. # Specimens cut from 6.35mm plate, in rolling direction</dl></form></form></body></html></pre>								html file header material & test			
<pre># # FileType= strain_life #DataType= raw #TIMEcol= 0 #NAME= AA7075T651 #Name= Aluminum #NAME= Kurath #Stress_units= mpa #Strain_units= strain #Su= 0 #Sy= 0 #E= 70000. #%RA= 0 #BHN= 0.</pre>						ntifier tags					
#TotStr #_Amp 0.010 0.010 0.0075 0.0075 0.0075 0.0050 0.0050 0.0040 0.0040 0.0040 0.0044 0.0034 0.0034 0.0034 0.0032 0.0029	ain 2Nf 508 568 590 1964 2874 2900 36600 37600 106100 106900 106900 124800 833000 905000 2499000 3002100	Stress Amp 543. 541 540 515 503 507 356 350 337 279 281 288 239 242 197 201	Mean Stress 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Plastic Strain Amp 0.0022 0.0023 0.0001 0.00026 0.0003 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Initial Elastic Mod 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000. 70000.	Raw test data		When it is of existin examp http://fde.uwaterloo.ca/Fatigu	creating such a file ten best to edit an g file. A txt file of the le is here: ueClass/FCourseNotes/exampleSAEfile.html.txt		
# Tail of html						Tail of html	l wra	pper			

Step 2: Open the resulting html file in your web browser and click on the "Send for Plot" button

F.D.& E. Standard file Plot/Fit from UoWaterloo Calc. Site

Mon Apr 3 13:06:52 EDT 2017

cread done converting input

read_lst_line= #saeinput FDE_fit SAE_Standard_File #Copyright (C) 2011 Fatigue Design + Evaluation Comm. and P.Kurath
found= #saeinput FDE_fit SAE_Standard_File #Copyright (C) 2011 Fatigue Design + Evaluation Comm. and P.Kurath
File process requested= FDE_fit
ITEM1= #FileType=
ITEM2= strain_life
LEFTOVER=
ITEM1= #DataType=
ITEM2= raw
LEFTOVER=

The web server will return a page that includes a 3 figure image:

more...

Scroll down this page and at the bottom you will find a digitized version of the traditional fit curve.

Copy and paste the data into a new file.

Example name: newFit.txt

* NOTE!! The Following Points are **FITTED DATA:**#NOTE!! Fitted Stress computed using Experm. K' and n' *Stress_Units= MPa

#	Total Strain	n 2Nf	Stress	Mean	Plastic Strair	n Initia	1	
#	Amp		Amp	Stress	Amp	Elastic	Mod.	
	6.14771	1	705.4	Θ.	6.13763	70000. #	Fitted_point	
	2.58666	2	685.3	Θ.	2.57687	70000. #	Fitted_point	
	0.82927	5	659.5	Θ.	0.81985	70000. #	Fitted_point	
	0.35496	10	640.8	Θ.	0.34581	70000. #	Fitted_point	
	0.15549	20	622.6	Θ.	0.14660	70000. #	Fitted_point	
	0.05635	50	599.7	Θ.	0.04778	70000. #	Fitted_point	
	0.02909	100	583.2	Θ.	0.02076	70000. #	Fitted_point	
	0.01722	200	567.4	Θ.	0.00911	70000. #	Fitted_point	
	0.01079	500	546.6	Θ.	0.00298	70000. #	Fitted_point	
	0.00865	1000	528.6	Θ.	0.00110	70000. #	Fitted_point	
	0.00742	2000	502.4	Θ.	0.00024	70000. #	Fitted_point	
	0.00638	5000	445.9	Θ.	0.00001	70000. #	Fitted_point	
	0.00579	10000	405.2	Θ.	0.00000	70000. #	Fitted_point	
	0.00529	20000	370.4	Θ.	0.00000	70000. #	Fitted_point	_
	0.00472	50000	330.2	Θ.	0.00000	70000. #	Fitted_point	I
	0.00433	100000	303.2	Θ.	0.00000	70000. #	Fitted_point	-
	0.00398	200000	278.5	Θ.	0.00000	70000. #	Fitted_point	
	0.00356	500000	249.0	Θ.	0.00000	70000. #	Fitted_point	
	0.00327	1000000	228.8	Θ.	-0.00000	70000. #	Fitted_point	
	0.00300	2000000	210.2	Θ.	0.00000	70000. #	Fitted_point	
	0.00269	5000000	188.0	Θ.	0.00000	70000. #	Fitted_point	
	0.00247	10000000	172.8	Θ.	0.00000	70000. #	Fitted_point	
	0.00227	20000000	158.8	Θ.	0.00000	70000. #	Fitted_point	
	0.00203	50000000	142.0	Θ.	0.00000	70000. #	Fitted_point	
	0.00186 1	999999999	130.5	Θ.	-0.00000	70000. #	Fitted_point	
	0.00171 2	999999999	119.9	Θ.	0.00000	70000. #	Fitted_point	
	0.00153 5	999999999	107.2	Θ.	0.00000	70000. #	Fitted_point	
	0.00141 10	999999999	98.5	Θ.	0.00000	70000. #	Fitted_point	
44								

In a gnuplot window plot the data from both the raw test data file and this newFit.txt file. Use a gnuplot commands such as:

```
set grid
set logscale xy
set yrange [0.0001:1.0]
set pointsize 1.5
plot "exampleSAEfile.html" using 2:1 with p pt 6, "newFit.txt" u 2:1 w lp pt 16
```

Then edit the 2Nf (life) column until the newFit.txt data fits the raw test data. Save the edited file and check with another plot. This usually is an iterative process.

Change the *#*DataType= value to "fitted"

#FileType= st	raintife	2			fit ve
#DataType= fi	tted				fractu
#TIMECULE = 0 $\#\text{NAME} = \Delta \Delta 7075^{\circ}$	T651				life n
#Name= Alumin	um				inc p
#NAME= Kurath	am				test d
#Stress units:	= mpa				
#Strain_units	= sṫrain				
#Su= 580	# mpa,	assumed fro	om Endo	o Morrow data	a file
#Sy= 0					
#E= 70000.					
#%RA= 0					
#BHN= ᠐.					
# #NOTELL The E	allowing	Points are	-h-ET		
#NOTE!! Fitte	d Stress	computed us	Sing E	vnerm K' and	
#Total Strain	2Nf 9	Stress Mean	n Pla	astic Strain	Initial
## Amp	2111 5	Amp Stre	ess	Amp	Elastic Mod.
0.41	1	801	0	.399	70000. # from EndoMorro
0.01079	500	546.6	0.	0.00298	70000. #Fitted_point
0.00865	1000	528.6	0.	0.00110	70000. #Fitted_point
0.00742	2000	502.4	0.	0.00024	70000. #Fitted_point
0.00638	5000	445.9	0.	0.00001	70000. #Fitted_point
0.00579	10000	405.2	0.	0.0	70000. #Fitted_point
0.00529	20000	370.4	0.	0.0	70000. #Fitted_point
0.00472	50000	330.2	0.	0.0	70000. #Fitted_point
0.00433	100000	303.2	0.	0.0	70000. #Fitted_point
0.00398	200000	2/8.5	⊍.	0.0	70000. #Fitted_point
0.00300		249.0	⊎.		70000. #Filled_point
0.00327	2000000	220.0	0.		70000. #Fitted point
0.00300	5000000	188 0	0.	0.0	70000 #Fitted point
0.00247	10000000	172.8	0.	0.0	70000, #Fitted point
"		1,2.0	0.	0.0	potter "reced_potter

In this case I have not changed the fit very much; only the tensile fracture point, and deleted the life points where there is no raw test data.

> As long as you keep the StressAmpl. and StrainAmpl. the same, you can change the fatigue life points to any value that better fits the raw data. In this case no changes were necessary.

> > If you want to add a point make sure that the stress and strain values fit the cyclic stress-strain curve.

The advantage of using a digital fitted curve:

- 1. Flexibility. We can fit odd shaped curves such as periodic overload tests or composite materials data.
- 2. Computationally fast: We can use the fitted curves in spread sheets, cyclic stress-srain deformation models, or any fatigue calculation program.

No complicated (and slow) equations needs to be solved. Solution is by linear interpolation for stress versus strain or by log-log interpolation for strain vs. life or stress vs. life or any other derived term vs. life.

3. The listed values or other derived terms can be easily plotted.

There are a number of more "sophisticated" ways to organize such a database structure, and the author has created several such versions in the past, but although its fun programming, it was basically a waste of effort. Experience shows that what 99% of the fatigue/durability users want is a data file/plot for the material name that they have, and, if there is no direct match, a nearest or "best" fit. No one ever uses the search options for values of Su (ultimate Stress), Sy(yield) etc. This is from an observation of hundreds of verbal requests by engineers over a period of more than 25 years. The best policy in a fatigue related database is to keep things very simple. Such simplicity can be achieved by placing each raw and fitted html file into its own folder, or a folder that contains all data sets of the same material.

The following list structure lets a user achieve the same search objective. When no exact match can be found for the requirements, the subsequent search for "next best or equivalent material" can be fairly difficult to solve without expert help.

Database Structure:

A very simple form of fatigue material property database can be constructed by linking from an index file to a tree of other folders and files:

Commands to make such a folder structure:

```
1. Make a folder "tree"
```

While in some base folder issue the following commands: mkdir Materials cd Materials mkdir Steel Alum CastAlum cd Steel mkdir Sae1000 Sae4000 cd ../../

cd Alum mkdir AA1xxx AA2xxx AA7xxx

You could also create these in any GUI (graphical User Interface) window.

- 2. Move your raw data and fitted html files into the lowest level folders such as Sae1000 or AA7xxx
- 3. Edit or copy some index files into the upper folders. For example the file located here: http://fde.uwaterloo.ca/FatigueClass/Notes/dindex.txt can be placed into the top folder "Materials" Once in that folder rename it to an html suffix mv dindex.txt dindex.html
- 4 Similarly place the following files into the subfolders

Save:

http://fde.uwaterloo.ca/FatigueClass/Notes/steel.txt as:

Materials/Steel/steel.html

Commands to make such a folder structure (continued)

4 cont'd

Save: http://fde.uwaterloo.ca/FatigueClass/Notes/steel.txt

as: Materials/Alum/alum.html

Save: http://fde.uwaterloo.ca/FatigueClass/Notes/sae1xxx.txt

as: Materials/Steel/Sae1xxx/sae1xxx.html